Saturday, June 25 2022 Sign In   |    Register

News Quick Search



Front Page
Power News
Today's News
Yesterday's News
Week of Jun 20
Week of Jun 13
Week of Jun 06
Week of May 30
Week of May 23
By Topic
By News Partner
Gas News
News Customization


Pro Plus(+)

Add on products to your professional subscription.
  • Energy Archive News

    Home > News > Power News > News Article

    Share by Email E-mail Printer Friendly Print

    Delft University of Technology : TU Delft's Control Room of the Future makes power grid digitally resilient

    May 17, 2022 - ENP Newswire


      The increased digitalisation of the power grid comes with its own set of cyber threats and risks. In TU Delft's Control Room of the Future (CRoF) the power grid gets put through its paces. This remarkable research facility offers both industry and academics unique opportunities to research, develop and test the integration of new energy management technologies into the smart grid. So the CRoF is actually a testbed for dealing with all kinds of disruptions, including cyberattacks. Its ultimate goal? A power grid that is intelligent, resilient and cyber secure.

      The rapid transition to renewable energy threatens to cause major problems to the electricity grid in the Netherlands. This means that research is required. A great deal of research. For example, will the Dutch grid be capable of withstanding a new wind farm off the coast of Zandvoort? How will we keep everything stable when, in the near future, millions of solar panels have been installed by individual house owners? And how can we ensure that everyone will be able to charge their electric vehicles in the future? Using a digital twin of the Dutch electricity network, we can test all kinds of scenarios, explains Alex Stefanov, technical director and mastermind behind the CRoF. 'In our control room, new operational technologies are also being tested here, ranging from e.g. innovative energy management systems created at the university itself to hard- and software solutions developed at industrial partners. As we are able to simulate the power grid in real time, we can connect prototypes to the grid and see how they perform under real-life circumstances to balance generation with consumption in real time.'


      Artificial Intelligence and machine learning can help decision-making under uncertainty in our future power grid. Stefanov: 'As power grid operation gets more complex, you need more automation and intelligence. Here, you can think of AI like an autopilot. Nowadays, pilots only touch the controls during take-off and landing, or when something unexpected happens. During predictable parts of the flight, it is on autopilot. Power system operation is still a purely manual process. We want to create AI that can support system operators just like an autopilot does, so operators will act as supervisors.' Ultimately, he envisages a control room where screens may have been replaced with VR glasses worn by the operators.

      Cyber security

      As the power grids gets more digitized, cyber security becomes more important. 'Over the years, we've changed over from analogue communications to new information and communication technologies. Even in substations, hardwiring has been replaced by digital communications in most cases,' says Stefanov. 'If just a few transmission lines are maliciously disconnected, other lines will pick up the flow of electricity, become overloaded and under certain stress conditions are automatically disconnected. Such cyberattacks have the potential to cause failures that can quickly cascade all over Europe, as all power grids are interconnected.'

      In reality, cyberattacks are constantly happening on electricity networks across the world. Most of them are nipped in the bud and never make it onto the news. Occasionally, however, things really go wrong. In 2016, for example, cyberattacks on grid operators in Ukraine caused power outages. But the TU Delft researchers are not only focusing on the consequences of cyberattacks on the power grid, but on all kinds of disruptions: from broken transmission lines to short circuits. Would you like to read more about the research taking place in the Delft control room? Then read this story.

      Stefanov works on ways to detect and prevent cyberattacks using AI and computational intelligence techniques and on dealing with the consequences to build cyber-physical system resiliency. 'We can stress the power grid to its limits and see what happens, something you cannot do in real-life. We can also provide training for cyber security professionals and control room operators on how to handle cyberattacks on power grids.'

      Alex Stefanov is working with his colleagues at TU Delft and industry partners on ways to detect and prevent cyberattacks. For this, Stefanov uses AI and other intelligent techniques.

      Unique setup

      As a matter of course, actual control rooms are highly secure environments, with little scope for visiting, let alone experimenting, but the CRoF comes as close as it gets. 'We have rebuilt a front-end control room. We also have all the operational technologies at our disposal, like supervisory control and data acquisition management systems. And we simulate the physical infrastructure of the power grid - power lines, substations, wind turbines and so on - with our supercomputer,' says Stefanov. 'Currently, a digital twin as large as a quarter of the Dutch power grid can be simulated, but plans have been drawn up to expand that to the entire Dutch power grid.'

      Innovation hub

      This makes the CRoF an unparalleled testing ground for industry. Stefanov has gathered an ecosystem of industry partners, including vendors like Siemens and General Electric, grid operators like TenneT, and distributors like Stedin. 'We provide a neutral ground, where system operators, technology providers and academia can work together on the necessary innovation of the power grid,' says Stefanov. 'We can do research and proof of concepts, support feasibility studies for patent applications, or offer them a podium to demonstrate the new technologies for intelligent power system operation.' Whereas TU Delft is promoting open science for its own research whenever possible, industrial partners can count on non-disclosure and data confidentiality if required. 'All sensitive data are stored in the vault of a highly-secured data centre.'

      More information

      For questions about the Control Room of the Future and accelerating the energy transition, please contact:

      Dave Boomkens, research information officer for the Energy Transition at TU Delft - / +31 6 34 08 14 61

      Alex Stefanov, Assistant Professor & Scientific Director of the Control Room of the Future (CRoF) Technology Centre - / +31 15 27 81528

      The energy transition is a crucial weapon in the fight against climate change - our biggest challenge. Only if our energy system is carbon neutral by 2050 will we mitigate the effects of climate change. But at the current pace, we will not get there in thirty years' time. That is why 'speeding up the energy transition' is the theme for our 180th anniversary year - a year in which we celebrate our active role in the energy transition.

      The digital transformation of the energy system will speed up the energy transition. Therefore, we organise our Digitalization for Energy Event on May 19. This event will address the challenges posed by the digitisation of the energy system - for example, whether there are enough professionals specialised in both the energy system and its digitisation - and will zoom in on the Control of the Future where cyber security and the resilience of the electricity grid will be increased.


    Other Articles - International


       Home  -  Feedback  -  Contact Us  -  Safe Sender  -  About Energy Central   
    Copyright © 1996-2022 by CyberTech, Inc. All rights reserved.
    Energy Central® and Energy Central Professional® are registered trademarks of CyberTech, Incorporated. Data and information is provided for informational purposes only, and is not intended for trading purposes. CyberTech does not warrant that the information or services of Energy Central will meet any specific requirements; nor will it be error free or uninterrupted; nor shall CyberTech be liable for any indirect, incidental or consequential damages (including lost data, information or profits) sustained or incurred in connection with the use of, operation of, or inability to use Energy Central. Other terms of use may apply. Membership information is confidential and subject to our privacy agreement.