Wednesday, August 17 2022 Sign In   |    Register

News Quick Search



Front Page
Power News
Today's News
Yesterday's News
Week of Aug 15
Week of Aug 08
Week of Aug 01
Week of Jul 25
Week of Jul 18
By Topic
By News Partner
Gas News
News Customization


Pro Plus(+)

Add on products to your professional subscription.
  • Energy Archive News

    Home > News > Power News > News Article

    Share by Email E-mail Printer Friendly Print

    Fundamentals of Hydrogen in Structural Metals at the Atomic Scale

    June 24, 2022 - Pivotal Sources


      Germany, June 23 -- Project Id: 105662

      Description: Objective

      H is an element that plays an important role in the production and efficient usage of energy as it significantly influences the way we produce and consume energy: In high-strength materials, the usability and service life is limited by H induced failure. These materials are key in transport systems, wind power and H storage. Despite the enormous economic significance, little is known fundamentally about the underlying damage mechanisms, which are inherently playing out on the atomic scale.

      The PI's team will use atom probe tomography, an atomic scale 3D microscopy method to systematically analyse the location and pathways of H in the microstructure and shed light on damage mechanisms in Fe and Ni based materials. This will include vacancies/clusters (0D), dislocations (1D), interfaces (2D) and second phased (3D). The approach will be combined with micro-mechanics to investigate the involvement of H in fracture behaviour. We will measure the amount of H at dislocations required for enhanced plasticity, in the plastic wake of a crack and at the crack tip. In production materials, we will determine the amount of H at identified traps after processing as well as penetration pathways into the material. Finally, we will clarify the contribution of H to a important problem for wind power generation: white-etching cracks.

      These experiments are now made possible in a commercial atom probe by using 2H (D) charging combined with cryo specimen transfers to avoid H loss. In the project, the team will go a step further and build an atom probe with ultra-low H background to enable the direct detection of 1H, enabling analysis without tracers.

      The resulting knowledge will greatly enhance our knowledge on the fundamentals of H in metals at the atomic scale. This will lead to increased predictability of failures, the rational design of H resistant high strength materials and protection measures and with it great cost savings especially in renewable energy generation and electromobility.

      Grant agreement ID: 805065


      Ongoing project

      Start date

      1 December 2018

      End date

      30 November 2023

      Funded under


      Overall budget

      € 1 497 959

      EU contribution

      € 1 497 959

      Country: Germany

      Sector: Banking, Financial Services & Insurance,Funding Agencies

      Address: FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN-NUERNBERG Address Schlossplatz 4 91054 Erlangen Germany


      End Date: November 30, 2023 Published by HT Digital Content Services with permission from Pivotal Sources. For any query with respect to this article or any other content requirement, please contact Editor at


    Other Articles - International


       Home  -  Feedback  -  Contact Us  -  Safe Sender  -  About Energy Central   
    Copyright © 1996-2022 by CyberTech, Inc. All rights reserved.
    Energy Central® and Energy Central Professional® are registered trademarks of CyberTech, Incorporated. Data and information is provided for informational purposes only, and is not intended for trading purposes. CyberTech does not warrant that the information or services of Energy Central will meet any specific requirements; nor will it be error free or uninterrupted; nor shall CyberTech be liable for any indirect, incidental or consequential damages (including lost data, information or profits) sustained or incurred in connection with the use of, operation of, or inability to use Energy Central. Other terms of use may apply. Membership information is confidential and subject to our privacy agreement.