Saturday, December 3 2022 Sign In   |    Register

News Quick Search



Front Page
Power News
Today's News
Yesterday's News
Week of Nov 28
Week of Nov 21
Week of Nov 14
Week of Nov 07
Week of Oct 31
By Topic
By News Partner
Gas News
News Customization


Pro Plus(+)

Add on products to your professional subscription.
  • Energy Archive News

    Home > News > Power News > News Article

    Share by Email E-mail Printer Friendly Print

    Optica: New laser-based instrument designed to boost hydrogen research

    September 16, 2022 - Targeted News Service


      WASHINGTON, Sept. 15 (TNSjou) -- Optica, formerly the Optical Society, issued the following news release:

      * * *

      Advance could lead to more environmentally friendly rocket fuels

      * * *

      Researchers have developed an analytical instrument that uses an ultrafast laser for precise temperature and concentration measurements of hydrogen. Their new approach could help advance the study of greener hydrogen-based fuels for use in spacecraft and airplanes.

      "This instrument will provide powerful capabilities to probe dynamical processes such as diffusion, mixing, energy transfer and chemical reactions," said research team leader Alexis Bohlin from Lulea University of Technology in Sweden. "Understanding these processes is fundamental to developing more environmentally friendly propulsion engines."

      In the Optica Publishing Group journal Optics Express, Bohlin and colleagues from Delft University of Technology and Vrije Universiteit Amsterdam, both in the Netherlands, describe their new coherent Raman spectroscopy instrument for studying hydrogen. It was made possible due to a setup that converts broadband light from a laser with short (femtosecond) pulses into extremely short supercontinuum pulses, which contain a wide range of wavelengths.

      The researchers demonstrated that this supercontinuum generation could be performed behind the same type of thick optical window found on high-pressure chambers used to study a hydrogen-based engine. This is important because other methods for generating ultrabroadband excitation don't work when these types of optical windows are present.

      "Hydrogen-rich fuel, when made from renewable resources, could have a huge impact on reducing emissions and make a significant contribution to alleviating anthropogenic climate change," said Bohlin. "Our new method could be used to study these fuels under conditions that closely resemble those in rocket and aerospace engines."

      Getting light in

      There is much interest in developing aerospace engines that run on renewable hydrogen-rich fuels. In addition to their sustainability appeal, these fuels have among the highest achievable specific impulse--a measure of how efficiently the chemical reaction in an engine creates thrust. However, it has been very challenging to make hydrogen-based chemical propulsion systems reliable. This is because the increased reactivity of hydrogen-rich fuels substantially changes the fuel mixture combustion properties, which increases the flame temperature and decreases ignition delay times. Also, combustion in rocket engines is generally very challenging to control because of the extremely high pressures and high temperatures encountered when traveling to space.

      "The advancement of technology for sustainable launch and aerospace propulsion systems relies on a coherent interplay between experiments and modeling," said Bohlin. "However, several challenges still exist in terms of producing reliable quantitative data for validating the models."

      One of the hurdles is that the experiments are usually run in an enclosed space with limited transmission of optical signals in-and-out through optical windows. This window can cause the supercontinuum pulses needed for coherent Raman spectroscopy to become stretched out as they go through the glass. To overcome this problem, the researchers developed a way to transmit femtosecond pulsed laser through a thick optical window and then used a process called laser induced filamentation to transform it into supercontinuum pulses that remain coherent on the other side.

      Studying a hydrogen flame

      To demonstrate the new instrument, the researchers set up a femtosecond laser beam with the ideal properties for supercontinuum generation. They then used it to perform coherent Raman spectroscopy by exciting hydrogen molecules and measuring their rotational transitions. They were able to demonstrate robust measurements of hydrogen gas over a wide range of temperatures and concentrations and also analyzed a hydrogen/air diffusion flame similar to what would be seen when a hydrogen-rich fuel is burned.

      The researchers are now using their instrument to perform a detailed analysis in a turbulent hydrogen flame in hopes of making new discoveries about the combustion process. With a goal of adopting the method for research and testing of rocket engines, the scientists are exploring the limitations of the technique and would like to test it with hydrogen flames in an enclosed slightly pressurized housing.

      Paper: F. Mazza, A. Stutvoet, L. Castellanos, D. Kliukin, A. Bohlin, "Coherent Raman spectroscopy on hydrogen with in-situ generation, in-situ use, and in-situ referencing of the ultrabroadband excitation," Opt. Express, 30, 20, 35232-35245 (2022). DOI: 10.1364/OE.456817.

      * * *

      JOURNAL: Optics Express

      * * *

      Original text here:


    Other Articles - International


       Home  -  Feedback  -  Contact Us  -  Safe Sender  -  About Energy Central   
    Copyright © 1996-2022 by CyberTech, Inc. All rights reserved.
    Energy Central® and Energy Central Professional® are registered trademarks of CyberTech, Incorporated. Data and information is provided for informational purposes only, and is not intended for trading purposes. CyberTech does not warrant that the information or services of Energy Central will meet any specific requirements; nor will it be error free or uninterrupted; nor shall CyberTech be liable for any indirect, incidental or consequential damages (including lost data, information or profits) sustained or incurred in connection with the use of, operation of, or inability to use Energy Central. Other terms of use may apply. Membership information is confidential and subject to our privacy agreement.