Thursday, January 26 2023 Sign In   |    Register

News Quick Search



Front Page
Power News
Today's News
Yesterday's News
Week of Jan 23
Week of Jan 16
Week of Jan 09
Week of Jan 02
Week of Dec 26
By Topic
By News Partner
Gas News
News Customization


Pro Plus(+)

Add on products to your professional subscription.
  • Energy Archive News

    Home > News > Power News > News Article

    Share by Email E-mail Printer Friendly Print

    Gwangju Institute of Science and Technology Researchers Embrace Uncertainty to Make Microgrids Better

    December 7, 2022 - PR Newswire


      The new two-stage stochastic optimization model accounts for variations and uncertainty in renewable energy to make the optimal scheduling decision

      GWANGJU, South Korea, Dec. 7, 2022 /PRNewswire/ -- Microgrids are crucial for integrating renewable energy into the electrical grid. But current microgrid models ignore the inherent uncertainty of renewable energy supply. Now, scientists from Gwangju Institute of Science and Technology have developed a new optimization model that incorporates possible variations in future power outputs to arrive upon an optimal scheduling decision and reduce operational costs and load shedding.

      Renewable energy is seen as an answer to climate change, yet its uptake is limited by the variability and intermittent nature of most renewable energy sources. A promising solution to this problem is microgrids. Microgrids are smaller, localized electricity grids that can be connected to the main grid of the region, but also can also be disconnected or "islanded" if needed. Models that guide the operation of microgrids, such as scheduling load shedding etc., are key to their efficient functioning. But thus far, most microgrid models have either neglected the uncertainty and variations in renewable energy or assumed the worst-case scenario, which can lead to an increase in energy not supplied (ENS) and operating costs.

      To address this, a research team from Gwangju Institute of Science and Technology, South Korea, has developed a new two-stage stochastic optimization model to minimize operating costs and load shedding. According to Dr. Yun-Su Kim, who led the study, "One of the problems with microgrids is that they sometimes cannot supply enough electricity for the load, causing load shedding, and at other times they produce too much electricity. In this paper, we created an operation algorithm that can reduce operation costs and load shedding." The paper was made available online on August 26th, 2022 and was published in Volume 325 of Applied Energy on November 1st, 2022.

      A key element to the new optimization model was the creation of an (ANN)-based prediction model for the power output of renewable energy sources. This power output is obtained in the form of a probability density function, i.e., it provides the likelihood that a given power output will be obtained at any given point of time, thereby accounting for variations and uncertainty in the renewable energy supply. This probability density function is then fed into a stochastic optimization model that makes operating decisions, such as scheduling.

      The researchers validated their model using data from a microgrid designed by the Natural Energy Laboratory of Hawaii Authority. They found that the ANN predicted power output with a low error of 9.7%. The stochastic optimization model also offered an approximately 20% reduction in average ENS, as well as around 19% lower operating costs.

      "Fossil fuels bring with them climate change and inflation. Reforming the power grid using microgrids can help renewable energy integration. Thus, improving the efficiency and integration of microgrids will bring us one step closer to energy security and stability," concludes Dr. Kim.

      Let us hope this vision is realized soon for a better future!



      Title of original paper: Two-Stage stochastic optimization for operating a Renewable-Based Microgrid

      Journal: Applied Energy

      *Corresponding author's email:

      About the Gwangju Institute of Science and Technology (GIST)


      Cision View original content to download multimedia:

      SOURCE Gwangju Institute of Science and Technology


    Other Articles - International


       Home  -  Feedback  -  Contact Us  -  Safe Sender  -  About Energy Central   
    Copyright © 1996-2023 by CyberTech, Inc. All rights reserved.
    Energy Central® and Energy Central Professional® are registered trademarks of CyberTech, Incorporated. Data and information is provided for informational purposes only, and is not intended for trading purposes. CyberTech does not warrant that the information or services of Energy Central will meet any specific requirements; nor will it be error free or uninterrupted; nor shall CyberTech be liable for any indirect, incidental or consequential damages (including lost data, information or profits) sustained or incurred in connection with the use of, operation of, or inability to use Energy Central. Other terms of use may apply. Membership information is confidential and subject to our privacy agreement.