Energy Central Professional


Renewables: Efficient Flexible Organic Solar Cells Developed with Excellent Mechanical Ductility

Chemical Industry Digest  


    A research group led by Prof. Ge Ziyi at the Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese Academy of Sciences (CAS) has developed high-performance flexible organic solar cells (OSCs) with excellent thermal stability and stretchability, achieving power conversion efficiency efficiencies (PCE) of over 16.5%. Relevant results were published in Matter.

    As a promising power source for wearable electronic systems, such as electronic textiles and soft robotics, etc., flexible OSCs have attracted great attention due to their good robustness and compatibility. However, reconciling high PCE, reasonable stretchability and thermal stability in one integrated device is a grand challenge. In this study, the researchers at NIMTE incorporated polymer guests into the PM6:BTP-eC9 blend film to form entangled chain networks, thus improving the ductility and morphologically stability of the blend film.

    Due to the effective dissipation of local load caused by the entangled structure, the crack onset strain of the developed ternary blend membrane is 17.14% higher than that of the traditional binary blend membrane. In addition, a stabilized PCE of 16.52% was obtained for the polyethylene terephthalate-substrate-based flexible OSCs with excellent bending tolerance, thanks to the ternary heterojunction strategy.

    When stored in an N2-filled glove box at 85 °C, the PCE of the inverted ternary OSCs maintained over 85.5% (about 7.2% higher than the binary system) of its initial efficiency after 250 hours, indicating impressive thermal stability. Moreover, the ternary OSCs showed excellent stretchability, which maintained PCE retention of over 88% (about 13% higher than that of the binary system) after 200 stretching cycles under a tensile strain of about 5%. This study may shed light on the development and fabrication of high-ductility flexible OSCs by virtue of the structure morphology tuning.


Copyright © 1996-2023 by CyberTech, Inc. All rights reserved.
Energy Central® and Energy Central Professional® are registered trademarks of CyberTech, Incorporated. Data and information is provided for informational purposes only, and is not intended for trading purposes. CyberTech does not warrant that the information or services of Energy Central will meet any specific requirements; nor will it be error free or uninterrupted; nor shall CyberTech be liable for any indirect, incidental or consequential damages (including lost data, information or profits) sustained or incurred in connection with the use of, operation of, or inability to use Energy Central. Other terms of use may apply. Membership information is confidential and subject to our privacy agreement.